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by P. D. Spanos
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Rice University
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Based on the support provided by the aforementioned grant,
considerable advances were made in several structural mechanics
problems with stochasticity,

A new method for the solution of problems involving material
variability was developed. The material variability was modeled
as a stochastic process. The Karhunen-Loeve expansion of random
processes was used to represent the material variability in a
computationally expeditious manner. The well-known deterministic
finite element method has been emploved to discretize the
differential equation which governs the nodal response random
variables. An related spectral expansion of these random
variables was adopted in terms of the basis in the space of
second nodal random variables. This method yielded a
representation of the response surface in terms of the polynomial
chaos. The coefficient in this representation was such that it
involved enough information about the process so that one could
reproduce its probability distribution function. The method has
been applied to a plain-stress problem which involves a curved
geometrical boundary. The representation of the random field
over the curved domain was accomplished by solving the related
integral equation using a Galerkin formulation. Interestingly,
the result of the representation is independent of the mass size
which was employed, and converged quite rapidly as the number of
terms in the Karhunen-Loeve expansion increased. Even more
encouraging was the fact that the analytical results were found
in extremely good agreement with data produced by a Monte-Carlo
study of the problem. The findings of this research effort have
been summarized in the paper:

"Stochastic Finite Element Analysis With Curved
Boundaries," by R. G. Ghanem and P. D. Spanos,
Proceedings of the Sixth International Conference on
- Application of Statistics and probability in Civil
Engineering, Mexico City, Mexico, 1991, June 7-9, 1991,
pp. 158-165.

An effort was undertaken to develop a formulation of
stochastic concepts towards a unification of various finite
element techniques. Specifically, methods for the solution of
differential equations with random processes and coefficients
have been addressed. The method which was advocated treats the
random aspects of the problem as an added dimension. 1In this




manner, a formulation for the stochastic finite element method
has been derived which can be construed as a natural extension of
the deterministic finite element method. Finite element
representation alpng the random dimension was achieved by two
spectral expansions. One of them was used to represent the
coefficients of the differential equation which modeled the
random material property, and the other one was used to represent
the random solution process. The new concepts were implemented
by using a number of computational models as simple engineering
systems. The new method indeed involves generalizing the
concepts of finite element approximation to abstract spaces of
which the usual Euclidian space is a special case. The
deterministic case can be regarded as a digression of this
formalism to the particular case where the space of elementary
events involves only a single element, and where the probability
density function induced on the associated a-algebra is the
uniform distribution. The findings of these research efforts
have been summarized in the paper:

"A Spectral Formulation of Stochastic Finite Elements,"
by R. G. Chanem and P. D. Spanos, Proceedings of the
Tenth International Invitational Unification of Finite
Element Methods Symposium, July 18-19, 1991, Worcester
Polytechnic Institute, Worcester, MA, pp. 59-82.

Another numerical method for dealing with problems of
stochastic mechanics has been pursued and it involves a small
number of random parameters. This method is analogous to the
Monte-Carlo simulation method, but it is more efficient. 1In
fact, the method treats a stochastic problem as an ensemble of
deterministic ones. After solving a number of deterministic
problems, statistical analysis is performed to deduce the
necessary parameters characterizing the random nature of the
solution. Of course, this method is often the only option which
is available to solve complicated stochastic problems. However,
indiscriminate use of the method is not advocated due to the
significant computational cost. The new method has been used for
the determination of the eigenvalues of a beam bending problem
with random parameters. The beam is assumed to be clamped-
clamped of unit length, and its rigidity is a truncated normal
process with mean equal to one and with exponential auto-
correlation function. This kind of problem is quite difficult to
be treated either analytically or by other numerical methods. 1In
fact, the available algorithms can be applied in the case of very ¢
small randomness and they are quite costly computationally. The
new method has been used to determine the first three eigenvalues
of this problem. It was found that the analytical results are in
very good agreement with the results obtained by numerical
simulations of this problem. Further,
new method can be applied to a wide class of problems dealing
with random variables and stochastic processes. The findings of
this research effort have been summarized in the paper:
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YPseudo-Simulation Method For Stochastic Problems,'" by
B. A. Zeldin and P. D. Spanos, Proceedings of the Sixth
Probabilistic Mechanics, Structural and Geotechnical
Reliability Specialty Conference, American Society of
Civil Engineers, Boulder, CO, July 7-9, 1992, pp. 37~
40.

Another approach to dealing with problems of the numerical
solution of stochastic mechanics problems has been pursued.
Specifically, the Finite Difference Method for discretization of
stochastic continuous media has been addressed. The Neumann
expansion and perturbation methods used for solving the systems
of the associated algebraic equations have been studied.
Further, work has been done into the dependence on the mass size
of the discretization. It has been found that a mixed
formulation which involves both strain and stresses as
independent variables improves the performance of the method and
reduces the dependence on the mass size. The method has been
used to study the behavior of a beam which is subjected to
deterministic load and involves bending rigidity which is a
normal random process. It has been found that the mixed
formulation includes the convergence of the Neumann expansion,
and it minimizes its dependence on the mass size. This is
particularly true with regards to the variability of the
displacement, even when the coefficient of variation of the
bending rigidity is quite large. The findings of this research
effort have been summarized in the paper:

"Stochastic Mixed Finite Difference Method," by P. D.
Spanos and B. A. Zeldin, Proceedings of the Sixth
Probabilistic Mechanics, Structural and Geotechnical
Reliability Specialty Conference, American Society of
Civil Engineers, Boulder, CO, July 7-9, 1992, pp. 804-
807.

A class of Galerkin-type projection procedures applied for
random media for stochastic mechanics problems has been
developed. The use of a space of simple random variables as
projective has been adopted. Further, it has been shown that in
this case this procedure is equivalent to a generalization of
sampling technique. Then, the optimality of this indirect
sampling Has been investigated. It has been shown that this
method is a generalized stratified sampling method. That is, the
approximation of the problem from the space of sample random
variables produces an error with mean and conditional
expectation, given sigma-algebra induced by this partition, equal
zero. It has been shown that this error has zero estimate from
the set of indicator functions of given stratificaticn. Some
stochastic mechanics problems have been considered utilizing the
proposed method. It has been shown that the Loeve-Karhunen
exXpansion is a versatile tool for the approximation of a
stochastic field through a set of random variables. This
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expansion is optimal and, therefore¢, a small number of random
variables can approximate them adequately. Several examples have
demonstrated that the proposed method can be applied for treating
a wide class of problems dealing with random variables and
stochastic processes. The findings of this research effort have
been summarized in the paper:

"Indirect Sampling Method For Stochastic Mechanics
Problems," by P. D. Spanos and B. A. Zeldin,
Proceedings of the Sixth International Conference of
Structural Safety and Reliability, Innsbruck, Austria,
August 8-13, 1993 (to appear).

In terms of personnel, it is stated that in addition to the
supervising professor, two research assistants were involved in
the projects. One was supported exclusively by the research
grant from AFOSR, and another was jointly supported by this AFOSR
grant and discretionary funds from Rice University. The two
research assistants and the supervising professor formed a very
coherent group which worked with enthusiasm in this challenging
technical field.
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Based on the support provided by the aforementioned grant,
considerable advances were made in several structural mechanics
problems with stochasticity.

A new method for the solution of problems involving material
variability was developed. The material variability was modeled
as a stochastic process. The Karhunen-Loeve expansion of random
processes was used to represent the material variability in a
computationally expeditious manner. The well~known deterministic
finite element method has been employed to discretize the
differential equation which governs the nodal response random
variables. An related spectral expansion of these random
variables was adopted in terms of the basis in the space of
second nodal random variables. This method yielded a
representation of the response surface in terms of the pclynomial
chaos. The coefficient in this representation was such that it
involved enough information about the process so that one could
reproduce its probability distribution function. The method has
been applied to a plain-stress problem which involves a curved
geometrical boundary. The representation of the random field
over the’ curved domain was accomplished by soclving the related
integral equation using a Galerkin formulation. Interestlngly,
the result of the representation is 1ndependent of the mass size
which was employed, and converged quite rapidly as the number of
terms in the Karhunen-Loeve expansion increased. Even more
encouraging was the fact that the analytical results were found
in extremely good agreement with data produced by a Monte-Carlo
study of the problem. The findings of this research effort have
been summarized in the paper:

1) "Stochastic Finite Element Analysis With Curved
Boundaries," by R. G. Ghanem and P. D. Spanos,
Proceedings of the Sixth International Conference on

. Application of Statistics and probability in Civil
Engineering, Mexico City, Mexico, 1991, June 7-9, 1991,
pp. 158-165.

An effort was undertaken to develop a formulation of
stochastic concepts towards a unification of various finite
element techniques. Specifically, methods for the solution of
differential equations with random processes and coefficients
have been addressed. The method which was advocated treats the
random aspects of the problem as an added dimension. 1In this




manner, a formulation for the stochastic finite element method
has been derived which can be construed as a natural extension of
the deterministic finite element method. Finite element
representation along the random dimension was achieved by twe
spectral expansions. One of them was used to represent the
coefficients of the differential equation which modeled the
random material property, and the other one was used to represent
the random solution process. The new concepts were ilmplemented
by using a number of computational models as simple engineering
systems. The new method indeed involves generalizing the
concepts of finite element approximation to abstract spaces of
which the usual Euclidian space is a special case. The
deterministic case can be regarded as a digression of this
formalism to the particular case where the space of elementary
events involves only a single element, and where the probability
density function induced on the associated a—-algebra is the
uniform distribution. The findings of these research efforts
have been summarized in the paper:

2) "A Spectral Formulation of Stochastic Finite Elements,"
by R. G. Ghanem and P. D. Spanos, Proceedings of the
Tenth International Invitational Unification of Finite
Element Methods Symposium, July 18-19, 1991, Worcester
Polytechnic Institute, Worcester, MA, pp. 59-82.

Another numerical method for dealing with problems of
stochastic mechanics has been pursued and it involves a small
number of random parameters. This method is analogous to the
Monte~-Carlo simulation method, but it is more efficient. In
fact, the method treats a stochastic problem as an ensemble of
deterministic ones. After solving a number of deterministic
problems, statistical analysis is performed to deduce the
necessary parameters characterizing the random nature of the
solution. Of course, this method is often the only option which
is available to solve complicated stochastic problems. However,
indiscriminate use of the method is not advocated due to the
significant computational cost. The new method has been used for
the determination of the eigenvalues of a beam bending problem
with random parameters. The beam is assumed to be clamped-
clamped of unit length, and its rigidity is a truncated normal
process with mean equal to one and with exponential auto-
correlation function. This kind of problem is quite difticult to
be treated either analytically or by other numerical methods. In
fact, the available algorithms can be applied in the case of very
small randomness and they are quite costly computationally. The
new method has been used to determine the first three eigenvalues
of this problem. It was found that the analytical results are in
very good agreement with the results obtained by numerical
simulations of this problem. Further, it has been found that the
new method can be applied to a wide class of problems dealing
with random variables and stochastic processes. The findings of
this research effort have been summarized in the paper:
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3) "Pseudo-Simulation Method For Stochastic Problems," by
B. A. Zeldin and P. D. Spanos, Proceedings of the Sixth
Probabilistic Mechanics, Structural and Geotechnical
Reliability Specialty Conference, American Society of
Civil Engineers, Boulder, CO, July 7-9, 19%2, pp. 37-
40.

Another approach to dealing with problems of the numerical
solution of stochastic mechanics problems has been pursued.
Specifically, the Finite Difference Method for discretization of
stochastic continuous media has been addressed. The Neumann
expansion and perturbation methods used for solving the systenms
of the associated algebraic equations have been studied.
Further, work has been done into the dependence on the mass size
of the discretization. It has been found that a mixed
formulaticn which involves both strain and stresses as
independent variables improves the performance of the method and
reduces the dependence on the mass size. The method has been
used to study the behavior of a beam which is subjected to
deterministic load and involves bending rigidity which is a
normal random process. It has been found that the mixed
formulation includes the convergence of the Neumann expansion,
and it minimizes its dependence on the mass size. This is
particularly true with regards to the variability of the
displacement, even when the coefficient of variation of the
bending rigidi*y is quite large. The findings of this research
effort have been summarized in the paper:

4) "Stochastic Mixed Finite Difference Method," by P. D.
Spanos and B. A. Zeldin, Proceedings of the Sixth
Probabilistic Mechanics, Structural and Geotechnical
Reliability Specialty Conference, American Society of
Civil Engineers, Boulder, CO, July 7-9, 1992, pp. 804-

807.

A class of Galerkin-type projection procedures applied for
random media for stochastic mechanics problems has been
developed. The use of a space of simple random variables as
projective has been adopted. Further, it has been shown that in
this case this procedure is equivalent to a generalization of
sampling technique. Then, the optimality of this indirect
sampling Has been investigated. It has been shown that this
method is a generalized stratified sampling method. That is, the
approximation of the problem from the space of sample random
variables produces an error with mean and conditional
expectation, given sigma-algebra induced by this partition, equal
zero. It has been shown that this error has zero estimate from
the set of indicator functions of given stratification. Some
stochastic mechanics problems have been considered utilizing the
proposed method. It has been shown that the Loeve-Karhunen
exXpansion is a versatile tool for the approximation of a
stochastic field through a set of random variables. This
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expansion is optimal and, therefore, a small number of random
variables can approximate them adequately. Several examples have
demonstrated that the proposed method can be applied for treating
a wide class of problems dealing with random variables and
stochastic processes. The findings of this research effort have
been summarized in the paper:

5) "Indirect Sampling Method For Stochastic Mechanics
Problems," by P. D. Spanos and B. A. Zeldin,
Proceedings of the Sixth International Conference of
Structural Safety and Reliability, Innsbruck, Austria,
August 8-13, 1993 (to appear).

In terms of personnel, it is stated that in addition to the
supervising professor, two research assistants were involved in
the projects. One was supported exclusively by the research
grant from AFOSR, and another was jointly supported by this AFOSR
grant and discretionary funds from Rice University. The two
research assistants and the supervising professor formed a very
coherent group which worked with enthusiasm in this challenging
technical field.
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Stochastic Finite Element Analysis with Curved Boundaries

R.G. Ghanem ° P D. Spanos !

Abstract

An original method for the solution of problema involving material variability is proposed. ‘The
inaterial property ia modeled ns & stochastic peorcas. ‘The Karhunen-Loeve expansion ia used to
represent this procesa in A compntationally expedient manner. The standard deterministic finite
cemene mcthod i csployed to dmeratize the ihiffersntinl sepuntions governing the nedal reaponse
random variables. A spectral expansion of these random variables is then adopled in terms of
a Luais in the space of sccond order randoin variables. The method yields an expression for the
response surface in terms of the Polynownial Chaoscs, The coeflicieats in Lhe expansion are such
that they involve enough information about the raponse process 80 as to be possible to reproduce
its probability distribution function. The inetlrd is applicd to & plane-stress problem involving
n eurved geanseraend bonndary, Heprencatatiae of the eandam field over the curved doimain s
accomphished by solving the related mtegeal equation using o Gnlerkin formiation. 'L he rasulting
representation is independent of e mesh aiza cinployed and converges rapidly as the number of
terms in the Karhunen- Loove expansion 1 1.crenscd.

3 Introduction

The analysis of engincering systems with nncertain properties has witnessed a considerable resurgence
in recent vears, in particular with relation to systems involving many degrees of frcedom and requiring
recourse to the finite eleinent method for their analysis and design. A comprehensive treatment
of this class of problems can be accomplished by breaking down the complexily into two separats
issues. The first one consists of adequalely representing the uncertaiaty in the system properties
for implementation within a computational framework. The Karhuncn-Loeve cxpansion is used in
this paper as an optimal such representation. It effectively replaces the random process by a set
of uncorralated random variables while delegating the corresponding spatial dependence to a set of
deterministic funclions. The sccond issue involved in thie solution process is oblaining a representation
for the response process. This task is accomplished by first identifying a complete basis for such a
representation, and then by formulating the problem in such a way that the coefficients of this basis
in the representation can be numerically computed. In this paper, earlier formulations of the ideas
presented abave (Spanos and Ghanem, 1989, 1990, 1991) are extended to deal with situations where the
geometry of the domain under consideration is irregular, involv.ng curved boundaries. The efficiency
of the proposed method ia treating such problems is demonstrated by its application to the analysis of
a curved thin plate. Tn addecssing this problem, it is reminded that the ultimate goal of a stochastic
finite clement anadysis is the caleulation of certain ntatistics of the response procoss. Tlicso statistics
can be in the form of cither statistical moments, or probability distribution functior, or some other
incasure of the reliability of the system. As a first step in the solution procedure, the variational
formulation of the finite element method is used to obtain a spatially discrete form of the problem.
Following that, the PPolynomial Chaos expansion is used to derive & representation of Lhe response
process. Statistical moments and probability distribytion functions can then obtained.

*Civil Engineering Depactment, State Umiversity of New Yok, Buffalo, NY 14260,
'L.B. Ryon Chair in Lugincering, Rice University, Houston, TX, 77251,
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Fignre 1: Plate with Random Rigidity, Fxponential Covariance Model,

2 Finite Elcrnucnt Formulation

Consider th * thin plate shown in Figure (1). Its modulus of elasticity is assumed to be the realization of
atwo-dimensional Gaussian random process with known mean value £ and known covariance function
C(x%1,x3). Further, it is assuwined that the cxternal excitalion i deterministic and of unit magnitude.
Let the domain A of the plate be discretized into N four-noded quadrilateral finiie elements, each
element having eight degrees of freedom. The strain cnergy V¢ stored in cach element A® can be
expressed as

ve= 3 /,‘. oT(x) e(x) dA" )

where dA* is a diTerential clement in A®. Further, o(x) and e(x) denote the stress and the strain
vectors respectively, s a function of the location x within cach clement. Assuming linear elastic
material behavior, the stress may be expressed in terms of the strain as

7 = D*« (2)

where D* is the matrix of constitutive relations. Here o and « ~.re the vectors of stress and strain as

given by the equation

UT = [”rl Try Tryry I (3)

7 = [ €z, €ry Yayx; !, (4)

where o, is the stress along direction z, and ¢, is the strain along that same direction. For the plane
stress problem considered herein, D@ is given by the cquation

. 1 ue 0
é
,..__...._E (x) e 0 = E¢(x) P*, (5)

D -
1-pl 0o o Uz

where P* is a deterministic matrix, g, is the elemental Poisson ratio, and E*(x) is the clemental
modulus of elasticity. The two dimensional displacement vector u(x) representing the longitudinal and
transverse displacements within each element may be expressed in terms of the nodal displacements
of the element in the form

u(x) = H(ry,rqy) U°, (6)
where H¢{r,, r3) is the local interpolation matrix, U¢ is the random nodal response vector, and ry and
r; are local coordinates over the element. Substituting cquations (5) and (G) into equation (1) gives

;

Ve o= % /A E*(x) €T(x) P* e(x) dA* . M
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The strain within an clement is related to the displaceinents, longitudinal and transverse, through the
relation

¥

0
i)
&(x) = 0 35 u(x) . {(8)
o9
5;; (’)I|
Using equation (6}, equation (7) is rewrilten as
e(x) = B U, (9}

where matrix B involves derivatives of the interpolation matrix 1. Substituting equation (D) back
into equation (7) and performing a coordinate transformation, leads to

1 1
ve = 3 UT [0 [0 B BT(m) D () [30ldry dry U° (10)
2 o Jo

where |J*| denotes the determinant of the Jacobian of the transformation that map; an arbitrary
clement {¢) onto the four-noded square with sides cqual to one. The total strain energy V is obtained
by summing the contributions from‘a.ll the cicments. This procedure gives
1 N 1 3
V=g U7 / / E(ry.m2) BT(r1,73) P* B*(ry,7a) [3*] dry dry U* on
ot o Jo
The local representation of the response is related to the global representation through the following
transformation
U = C*U, {12}

where C* is 3 rectangular permutation matrix of zeros and ones reflecting the connectivity of the
elements and the topology of the mesh. Using equation (12), the following expression for the total
energy stored in the system is obtained

v o= -;-UTKU. (13)

Before evaluating the integrals in equation (11), the random process representing the modulus of
elasticity of the plate must be replaced by a representation which somehow decouples its spatial
dependence from its random dependence. The Karhunen-Loeve expansion (Spanos and Ghanem,
1988) is used hiercin as an optimal such representation. Accordingly, E(ry,r3) is replaced by

A
El(ri,ry, = 3 VRefulri ra) (14)
A=l

where 3y and fi(ry,r1) are, respectively, the eigenvalues and cigenfunctions associated with the
covariance function of the random process. The next stage in the computations, therefore, involves
solving the integral cigenvalue problem associated with the covariance kernel. That is,

Ao fulziym) = /A Clzi w22, v2) falza, ) dza dya . (15)
The kernel used in this paper is defined by the equation
Clzy.zmpn) = ¢ l=wml/b - dn-nllh (16)

where by and by are the corrclition distanres in the 2y and z3 directions respectively.
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3 Numerical Solution of the Integral Equation

Subdividing the doniain A of the plate into N finite clements A¢, equation (15) becomes

N
M faGznn) = Y [ Clanmizan) M) dat an

Interpolating for the value of the unknown function within an element in terms of its nodal values
results in the following expression

/n(zvy) = }le(rlnrl) f: . (18)

where H¢(ry, r2) is the interpolation matrix in torms of local coordinates ry and ry, and {2 is the vector
of nodal values for the unknown function associated with clement (e). For this particular problem,
bilinear interpolation is uscd over four-noded quadrilateral element. The matrix H*(r;,r;) is then
given by the cquation

H(ur) =g [ G=n)l=r)  (+n)i-rs) (19)
(T+r) (4} (Q-r)l4r)]).

Substituting cquation (18) and performing a transformation from global to local coordinates, equation
(17) becomes

N
A Sz = 2 [ Clanmiza i) Hi(nym) 130 da* &, (20)

enl

where |J¢] is the Jacobian of the coordinale transformation. A system of algebraic equations is obtained
from equation (28) by requiring the corresponding error to be orthogonal to all the interpolation
functions used. That is,

CD = ABD, (21)

where now the j** column of D is the j** eigenfunction calculated at the nodal points and
Aij = &, M. (22)

Matrices C and B are obtained by assembling matrices C.y and B,y where

Cop = [ [, Clavyizaya) HTlriors) W (raura) da® da? (23)
and
B, =/ Clevomira,yy) T (ry ) B (ry,r3) da*, (24)
A%

with (z1,y1) and (ry,r2} denoting the global and local coordinates of a point in A* respectively, The
assembly procedure just mentioned consists of combining cntries corresponding to the same node
{Akin, 1082).

4 Spectral Stochastic Finite Elements

The Karhunen-Loeve expansion for the modulus of clasticity may be substituted into equation (11)
to transform equation (13) into

1.1
- lyr ()
V=s3U Eka U (25)
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The integrations involved in equation (25) may be performed eitiier analytically or using some numer-
ical quadrature schemie. The work performed by the externally applied forees is

N
Vo= 3 /..- ut T(x) f(x) dA*

ewi
Al
= Uty c*T/ I T(x) f(x) dA* = UT . (26)
k=l At
where
N
f = cr “(x) f(x)dA* . 7
Tt [ et (27)

Minimizing the total potential energy (V — 17’) with respect 1o U, lrads to the equation

LY
[1\"“) + ) & xc“’] U=f. (28)

k=t

The re:ponse vector U is expanded along the basis given by the Polynomial Chaoses (Cluum and
Spanos, 1990) as,

P
U = Y e v{a)- (29)
1=0
Substituting equation (29) into equation (28), and requiring the error resulting from truncating the
scries at the P* term to be orthogonal to the P + 1 Polynomial Chaoses ¥,[{&}]f, results in a
system of linear algebraic equations of the form

P [ M
> [Z <GV{ENV,[(&))> KO | e, = <¥,[{E)] >, j=0...P, (30)

1=0 &=0

which can be solved for the cocflicients ¢,

5 Numerical Results

A curved plate is shown in Figure {1). The curved side is a ninety degree arc of a circle of unit
radius. The length of the straight edges is cqual to 1.25. The standard deviation of the longitudinal
displacement at node A, using two terms in the K-L expansion for the material stochasticity, is
shown in Figure (2). It is plotted against the standard deviation of the modulus of elasticity. The
results corresponding 1o four lerms in the K-L expansion are shown in Figure (3). Note the exccllent
convergence. The probability distribution functions corresponding to one of the response variable at
node A are depicted in Figures (4)-(7). Results corresponding to two and four terms in the Karhunen-
Locve expansion and up to third ordet Polynomial Chios are shown.

The two dimensional process representing the modulus of clasticity of the plate is simulated in
such & way as to accommaodate the non-uniform spatial distribution of the nodal points. The issue
is addressed by using the Karhunen-Loeve expansion to simulate a truly continuous random field.
To this end, the cigenvalues and cigenfunctions of the covariance kernel are computed as described
in the previous section. The random field is then simulated using equation (14) with the number
of terms equal to the number of nodes in the system. The orthogonal random variables appearing
in that equation are obtained as prondorandom compater generated uncorrelatod variates, with zero
mean and unit variance. L'lie resulting simulated random ficld is not as sensitive to the mesh size and
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Figure 2: Normalized Standard Deviation of Longitudinal Displacement at Corner 4 of the Cusved Plate, versus
Standard Deviation of the Modulus of Elasticity; Two Terms in the K.L Expansion; Exponential Covarinnce;
Oimae = 10.4.
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Figure 3: Normalized Standard Deviation of Longitudinal Displacement at Corner A of the Curved Plate, versus

Standard Deviation of the Modulus of Elasticity; Four Tetms in the K-L Expansion;, Exponential Covariance;
Omes = 10.4.
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Figure 4: Longitudinal Displacement at the Free End of the Curved Plate; Prabability Density Function
Using S0,000-SA_mpIu MSC, and Using Third Order Ilomogeneous Chaoe; Two Termas in the K-L Expansion;
Exponential Covariance.
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Figure 5: Longitudinal Displacement at the Free End of the Curved Plate; Tail of the Probability Density
Function Using 30,000-Sample MSC, and Using Third Order Homogeneous Chacs; Two Terms in tha K-L
Expansion; Exponential Covariance.
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Figure G: Longitudinal Displacement at the Free End of the Curved Plate; Probability Density Function
Using 30,000-Sample MSC, and Using Third Order llomogeneous Chaos; Four Terms in the K-L Expansion;
Exponential Covariance.
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Figuro 7: Longitudinal Displacement at the Free End of the Curved Plate; Tail of the Probability Density
Function Using 30,000-Sample MSC, and Using Third Order llomogeneous Chaos; Four Terms in the K-L
Expansion; Exponential Covariance.
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podal point distribution as the ficld obtained using morc conventional procedures. The results from
using the Monte Carlo simulation method are superimposed on the same plot as the analytical results.

Observe the good agreement between the analytical and the simulated results even for large values of
the coefficient of variation,
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Abstract

A method for the solution of differential equations with random processes
as coefficients is developed. The method relies on viewing the random aspect
of the problem as an added dimension, and on trealing random variables and
processes as functions defined over that dimension. This way, a formulation for
the stochastic finite element method is developed which is a natural extension
of the deterministic finite element method. Finite element representation
along the random dimension is achieved via two spectral expansions. One of
them is used to represent the coeflicients of the differential equation which
model the random material properties, the other is used to represent the
random solution process.




1. INTRODUCTION

Although the first quantitative ideas of probability theory took form as far back
as the seventeenth century, at the gambling tables, with Pascal and Fermat, it was
pot until well into this century that the body of knowledge known as probability
became a mathematical discipline. In the interim, some of the greatest scientific
minds, including Gauss, Laplace, and Poincare, as well as many others, were laying
the foundation for the theory by compiling observations and related theorems on the
chance occurrence of events. Several attempts to baptize the accumulated ideas as
a branch of mathematics were vehemently opposed by prominent mathematicians,
as lacking the rigorous foundation fit of a mathematical theory. However, the
postulation of the uncertainty principle early in this century created an urgency
for providing a sound mathematical framework for probablistic concepts. By this
time, important contributions in that direction had been made by, among others,
Poincare and Borel. But it was with Kolmogorov, in his Foundation of the Theory
of Probability (1933), that an axiomatic foundation of the theory was presented
and that the subject matter finally gained universal acceptance as a branch of
mathematics. -

The usefulness of this axiomization cannot be overestimated. Indeed, it provided
the connection between probability as a collection of observations of natural phe-
nomena and mathematical reasoning, thus providing a whole new set of perspectives
and tools with which to view and approach related problems. Specifically, as
related to the development of stochastic finite elements, the most significant aspect
of mathematical probability is the association of random variables, which are the
elementary ingredients of the theory, with functions defined over topological spaces.
Once this association has been established, the well developed field of functional
analysis could be used in analyzing and operating on these random variables. This
cotnection with functional analysis already carries the ingredients for a unification
of stochastjc finite elements with deterministic finite elements. Indeed, a major part
of the modern development in the theory of finite elements draws intimately from
functional analysis, so that at a certain level of abstraction, both the deterministic
and the stochastic finite element methods have the same theoretical foundation.
Q_DCe this unification is established, the deterministic finite element method can be
Viewed a5 2 special digression of the stochastic finite element method, whereby
some of the functional spaces involved have a particular structure. Unlike the
eterministic case, however, where functions are usually defined with respect to

besgue measure, when dealing with randem entities a more general concept of
;::ﬂflfre is c§lled for. Whereas a Lebesgue measure coincides, usually, with the more
vo!mtwe notion of differential volume, probability measures are abstractions of such

umes. The practical effect of this difference is that whereas in the deterministic
Case i‘discretization of a function with respect to its natural measure induces a
i;“fchzatiox.n of the physical space with respect to this same measure, and thus
N Uces a finite element mesh, a similar discretization in the probabilistic case, with

“spect 1o the probability measure, does not carry a paralle] physical consequence.

8
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Although at first this may be seem a weak point in the development of a finite:
element theory, it is quickly reminded that recent efforts in deterministic finits,
elements have been advocating similar abstract discretizations, the p-method and;
various spectral methods being cases in point. In this respect, the spectral theory c'(_
the stochastic finite element method, as developed in the sequel, can be viewed as 3
natural extension of these developments to the case of random operators. In the nexi,
section, a coherent mathematical framework is presented which is a natural setting:
for the analysis of random operator equations. Next, the theory of representation of.
stochastic processes is expanded with special emphasis on two spectral expansions,
namely the Karhunen-Loeve and the Polynomial Chaos expansions. These are then
used in the following section to develop the stochastic finite element method.

2. THE MATHEMATICAL MODEL

The class of problems dealt with in this study is not of the conventional engineering
kind in that it involves concepts of a rather abstract and mathematical nature. It is
both necessary and instructive to introduce at this point the mathematical concepts
which are used in the sequel.

The Hilbert space of functions (Oden, 1979) defined over a domain D, with values
on the real line R, is denoted by H. Let {2, ¥, P) denote a probability space. By
that is meant that §2 is a space of elementary events, ¥ is the o-field generated
by €, or loosely speaking, the space consisting of the various combinations of the
elements of §, and finally, P is the probability measure defined on ¥. Let x be an
element of D and 8 be an element of Q. Then, the space of functions mapping 3
onto the real line is denoted by ®. Each map 2 — R defines a random variable.

The inner products over H and over © are defined using the Lebesgue measure
and the probability measure, respectively. That is, for any two elements h;(x) and
hj(x) in H, their inner product ( Ai(x) , h;(x) ) is defined as

(hi(x), hi(x)) = /D hi()h;(x)dx . (1)

The domain D represents the physical space' over which the problem is defined.
Similarly, given any two elements a{f) and §(9) in ©, their inner product is defined.
as .

(a(6),8(0) = [ a(0)3(0)dP @

where dP is a probability measure. Under very general conditions, the integral
in equation (2) is equivalent to the average of the integrand with respect to the
probability measure dP, so that

(a(6),8(0)) = <a(0)B(6)> 3

where <.> denotes the operation of mathematical expectation. Any two elements
of the Hilbert spaces defined above 2re said to be orthogonal if their inner product
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vanishes. A random process may then be described as a function defined on the
product space D x . Viewed from this perspective a random process can be treated
as a curve in either of Hor ©,

The physical model under consideration involves a medium whose properties
exhibit random spatial fluctuations and which is subjected to a random external
excitation. The mathematical representation of this problem involves an aperator
equation
Alx,0)[u(x,8)] = f(x,6) (4)
where A(x, §)|.] is some operator defined on Hx ©. In other words, A is a differential
operator with coefficients exhibiting random fluctuations with respect to one or more
of the independent variables. The aim then is to solve for the response u(x,8) as
a function of both its arguments. With no loss of generality, A i assumed to be a
differential operator whose random coefficients are restricted i .eing second order
random processes. This is not a severe restriction for practical problems, since most
physically measurable processes are of the second order type. Then, each one of
these coefficients a,(x, §) can be decomposed into a purely deterministic component
and a purely random component in the form

ap(x,8) = ax(x) + ox(x,8) {5)

where G,(x) is equal to the mathematical expectation of the process ai(x, ), and
ai(x,8) is a zero-mean random process, having the same covariance function as the
process g, (x, #). Equation (4) can then be written as

(L(x) + n(xra))[u(xve)] = f(x,8), (6)

where L(x)[] is a deterministic differential operator and TI(x,8)[.] is a differential
Operator whose coefficients are zero-mean random processes. Before a solution to
€quation (6) is sought, it is essential to clarify what is meant by such a solution.

It will prove instructive to start with the deterministic finite element method
And see how the related concepts can be generalized. A finite element solution to a
deterministic problem governed by a certain differential equation consists basically
of computing the value of the dependent variables on a discrete mesh induced in the
*Pace spanned by the independent variables. This is probably the most widespread
Interpretation of a finite element solution; it has been crucial in disseminating the
:?eth‘fd as a powerful analysis and design tool into engineering practice. An alterna-
Ve Viewpoint which will prove to be more amenable to the required generalizations,
that 5 solution to a finite element pro.lem consists in evaluating the value of the
“’dﬁ't:ients in the expansion of the solution along a certain basis in an appropriate
UNctional space. The finite element procedure will consist in choosing a suitable

3513 and then computing optimal values of the coefficients with respect to this basis.
fom this perspective, the finite element mesh is naturally induced with specific
choices of these bases. With other choices, however, the expansion coefficients do
:°t Decessarily carry an obvious physical interpretation. In the stochastic case,
9¢ of the independent variables spans the space of elementary events, which can
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only be discretized with respect to a probabilily measure, the result lacking .‘
intuitive appeal. In this case, the appeal of the second interpretation of a finj
element solution is obvious. The problem then becomes one of identifying a sui
basis in thespace H x © over which the solution is defined, and of determiny
a meaningful optimality criterion for computing the coefficients in the associatg
expansion. Obviously, the basis functions in this case will be random. By simulatisg
realizations of these functions, corresponding realizations of the solution process oy
be obtained. Alternatively, by defining a suilable inner product over the space g
random variables, various statistics or, equivalently, norms of the solution procesj
may be evaluated.

3. REPRESENTATION OF STOCHASTIC PROCESSES

Similarly to the case of the deterministic finite element method, whereby functiom
are represented by a denumerable set of parameters consisting of the values of the
function and its derivatives at the nodal points, the problem encountered in the
stochastic case is that of representing a random process by a denumerable set d
random variables, thereby discretizing the process.

In the deterministic case discretization of the domain has a physical appea
The domain in the stochastic case does not, however, have a physical meaning that
permits a sensible discretization. In this context the functional analysis foundation
of the finite element method becomes useful as it can be extended to deal with
random functions. Two of the most useful expansions for random processes are the.
Karhunen-Loeve expansion, and the Polynomial Chaos expansion. The first requiret
knowledge of the covariance structure of the process under consideration, while the
second one is more general. The difference between these two expansions can be
loosely compared to that between a modal expansion and a Fourier-type expansiog
of a system response. Although the former has better convergence properties, the
latter is more general and does not require knowledge of the properties of the system-
These two expansions are discussed next.

3.1 Karhunen-Loeve Expansion

The major conceptual difficulty from the viewpoint of the class of problems cod”
sidered herein, involves the treatment of functions defined on these abstract spaceh
namely random variables defined on the o—field of random events. The most widell‘
used method, the Monte Carlo simulation, consists of sampling these functions &
randomly chosen elements of this o-field, in a random, collocation-like, scheme
Obviously, a quite large number of points must be sampled if a good approximatios.
is to be achieved. Alternatively, these functions could be expanded in a Fourier-typ®:

series as -
wx,8) = I Auka(6) fa(x) U}

nal
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where {£a(8)) is a set of random variables to be determined, A, is some constant,
and {fa(x)} is an orthonormal set of deterministic functions. Th's is exactly what
the Karhunen-Loeve expansion achieves. The expansion was derived independently
by a number of investigators (Karhunen, 1947; Loeve, 1948; Kac and Siegert, 1947}.

Let w(x,8) be a random process, function of the position vector x defined over
the domain D, with @ belonging to the space of random events €1. Let w(x)
denote the expected value of w(x,#) over all possible realizations of the process, and
C(x,,x;) denote its covariance function. By definition of the covariance function, it
is bounded, symmetric and positive definite. Thus, it has the spectral decomposition
{Courant and Hilbert, 1953)

Clxuxa) = 3 A fulx) Jalxa) (8)

nx=l

where ), and f,(x) are the eigenvalue and the normalized eigenvector of the covari-
ance kernel, respectively. That is, they are the solution to the integral equation

/D Clx1.x3) fa(x) dXy = Aa fa(x3) . (9)

Due to the symmetry and the positive definiteness of the covariance kernel (Loeve,
1977), its eigenfunctions are orthogonal and form a complete set. They have further
n normalized so that the following equation holds,

[ 1a(%) S} dx = Gum (10)
where 4., is the Kronecker delta. Clearly, w(x,2) can be written as
w(x,0) = w(x) + afx,0), (11)

whe.e a(x,0) is a process with zero mean and covariance function C(x1,%3). The
Process a(x,6) can be expeided in terms of the eigenfunctions f,(x) as

a(x.0) = 3 &a(8) Vin jn(x) (12)

Seconq order properties of the random variables £, can be determined by multiplying
. th's,d,_,, of equation (12) by a(x2 , #) and taking the expectaijon on both sides.
Pecifically, it is found that

Clxixa) = <a(x,8) a(x:,0)> (13)

32 <6a(0) nl0) > YA Am fals) fmlxa) -

nz=l m=xl

H
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Tiien, multiplying both sides of equation (14) by fi(x;), integrating over the domxj
D, and making use of the orthogonality of the eigenfunctions, yields

A-C(xhxz) fi(x2) dx; = A fu(x1) (0
= T <hl®) 6(0) > e S xi).

Muitiplying once more by fi(x,) and integrating over D, gives

N[ St S da = Y E<6al®) 600 > Aok b 0

n=}

Then, using equation (10) leads to

A by = \//\g Ay <&(0) 64(5) > . (15)
Equation (16) can be rearranged to give
<&(8) &(0) > = bu . an
Thus, the random process w{x, #) can be written as
w(x,0) = B(x) + 3> £a(8) yAn fa(x) (18
na=l
where,
<al)> =0, <€al8) En(8)> = bum, (19)

and )., fn(x) are solution to equation (9). Truncating the series in equation (1)
at the M*» term, gives

w(x,0) = Bx) + 3 &a(0) Vin fulx) o

n=0

An explicit expression for £.(6) can oe obtained by multiplying equation (12) b/
Ja{x) and integrating over the domain D. That is,

(8) = %/Da(x,ﬂ) falx) dx . Y

It is well known from functional analysis that the steeper a bilinear form deca’®

to zero as 2 function of one of its arguments, the more terms a-+ needed io “!

spectral representation in order to reach a preset accuracy. Noting that the Four®

transform operator is a spectral representation, it may be concluded that the fastet




the autocorrelation function tends to zero, the broader is the corresponding spectral
degsity, and the greater the number of requisite terms to represent the underlying
random process by the Karhunen-Loeve expansion.

For the special case of a random process possessing a rational spectrum, the
integral eigenvalue problem can be replaced by an equivalent differential equation
that is easier to solve (Van Trees, 1968). In the same context, it is reminded that a
pecessary and sufficient condition for a process to have a finite dimensional Markov
realization is that its spectrum be rational {Kree and Soize, 1986). Further, note
that analytical solutions for the integral equation (10) are obtainable for some quite
important and practical forms of the kernel C{x;,x3} (Juncosa, 1945; Slepian and
Pollak, 1961; Van Trees, 1968). In the general case, however, the integral equation
must be solved numerically. Various techniques are available to this end {Ghanem
and Spanos, 1991}.

3.2 Homogeneous Chaos

It is clear from the preceding discussion that the implementation of the Karhunen-
Loeve exparsion requires knowledge of the covariance function of the process being
expanded, As far as the system under consideration is concerned, this implies that
the expansion can be used for the random coefficients in the operator equation.
However, it cannot be implemented for the solution process, since ils covariance
lfmction and therefore the corresponding eigenfunctions are not known. An aiterna-
tive expansion is clearly needed which circumvents this problem. Such an expansion
uld involve a basis of known random functions with deterministic coefficients to be
foufzd by minimizing some norm of the error resulting from a finite representation.
'Ithrs should be construed as similar to the Fourier series solution of deterministic
differential equations, whereby the series coefficients are determined so as to satisfy
ome optimality criterion. To clarify this important idea further, a general functional
form of the solution process is written as

« = h[E(0).1] (22)

where R[] is a nonlinear functional of its arguments. In equation (22), the random
Processes involved have all been replaced by their corresponding Karhunen-Loeve
:;P;&er}tations. It is clear now that what is required is a nonlinear expansion
the []in terms of the set of random vasiables £.(8). I the processes defining
®Perator are Gaussian, this set is a sampled derivative of the Wiener process
mo(:?b‘ 1953.)‘. In this case, equation (22) involves functionals of the Brownian
- lon. This js exactly what the concept of Homogeneous Chaos provides. This
OI:N was first introduced b.y Wiener {1938) anc? consists of an extension of
1913 ")'&s \f'ork .on the.gcnf-ralzzahon of Taylor sen‘es'to fu'nctif)na.ls ( Volt'crra,
fune; - Wiener's contributions were the result of his investigations of nonlinear
cYionals of the Brownian motion. Based on Wiener’s ideas, Cameron and Martin
47). constructed an orthogonal basis for nonlinear functionals in terma of Fourier-
Imite functionals,
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3.2.1 Definitions and Properties

Let {f (0)}2, be a set of orthonormal Gaussian random variables. Consider the
space [, of all polynomials in {f.(ﬂ) =1 of degree not exceeding p. Let ', represent
the set of all polynomials in l" orthogonal to I‘,_ . Fioally, let T, be the space
spanned by T',. Then, the subspace [, of © is called the pt* Homogcneous Chaos,
and I'y is called the Polynomial Chaos of order p.

Based on the above definitions, the Polynomial Chaoses of any order p consist
of all orthogonal polynomials of order p involving any combination of the random
variables {£,(9)]%2,. It is clear, then, that the number of Polynomial Chaoses of
order p, which mvolve a specific random variable out of the set {£.{8)}%, increasa
with p. This fact plays an important role in connection with the finite dimeasional
Polynomial Chaoses to be introduced in the sequel. Furthermore, since random
variables are themselves functions, it becomes clear that Polynomial Chaoses are
functions of functions and are therefore functionals.

The set of Polynomial Chaoses is a linear subspace of the space of square
integrable random variables ©, and is a ring with respect to the functional mul-
tiplication TpI'(w) = Tp{w)li{w). In this context, square integrability must be
construed to be with respect to the probability measure defining the random vari-
ables. Denoting the Hilbert space spanned by the set {£,(8)} by ©(¢), the resultiog
ring is denoted by ®g(), and is called the ring of functions generated by ©(¢)-
Then, it can be shown that under some general conditions, the ring gy is dense
in the space @ (Kakutani, 1961). This means that any square-integrable random
function (2 — R) can be approximated as closely as desired by elements from $e()-
Thus, any element u(9) from the space © admits the following representation,

P EEED DD WD W b 8 (SN 1) R ()) (23)

P20 Nyt PneTP Blicudy

where I')(.) is the Polynomial Chaos of order p. The superscript n; refers to the
number of occurrences of £,,{6) in the argument list for T,{.). Also, the double
subscript provides for the possibility of repeated arguments in the argument list of
the Polynomial Chaoses, thus preserving the generality of the representation given
by equation (23). Briefly stated, the Polynomial Chaos appearing in equation (23)
involves r distinct random variables out of the set {£;(8)}&2,, with the k** random
variable £,(6) having multiplicity ni, and such that the total number of random
variables involved is equal to the order p of the Polynomial Chaos. The Polynomial
Chaoses of any order will be assumed to be symmetric with respect to their argu-
ments. Such a symmetrization is always possible. Indeed, a symmetric polynomial
can be obtained from a non-symmetric one by taking the average of the polynomial
over all permutations of its arguments. The form of the coefficients appearing in
equation (23) can then be simplified, resulting in the following expanded expression
for the representation of random variables,

0= aoTo + 3 a,Tu(ts(6) (24)
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where T,(.) are successive Polynomial Chaoses of their arguments, the expansion
being convergent in the mean-square sense. The upper limits on the summations
i equation (24) reflect the symmetry of the Polynomial Chaoses with respect to
their arguments, as discussed above. The Polynomial Chaoses of order greater than
one have mean zero. Polynomials of different order are orthogonal to each other; so
aze same order polynomials with different argument list. At times in the ensuing
developments, it will prove notationally expedient to rewrite equation (24) in the

form
o0

w0 = 3 & v,le(0), (25)
=0
where there is a one-to-one correspondence between the functionals ¥[.] and T[],
and also between the coefficients &, and a,,, ;, appearing in equation (24). Implicit
in equation (24) is the assumption that the expansion (24) is carried out in the order
indicated by that equation. In other words, the contribution of polynomials of lower
order is accounted for first.

Throughout the previous theoretical development, the symbol 8 has been used
.‘0 emphasize the random character of the quantities involved. It will be deleted
1o the ensuing development whenever the random nature of a certain quantity is
obvious from the context.

As defined abave, each Polynomial Chaos is a function of the infinite set {¢,},
aad is therefore an infinite dimensional polynomial. In a computational setting,
howcver, this infinite set has to be replaced by a finite one. In view of that, it
teems logical to introduce the concept of a finite dimensional Polynomial Chaos.

Pecifically, the n-dimensional Polynomial Chaos of order p is the subset of the
Polynomial Chaos of order P, as defined above, which is a function of only n of the
Uncorrelated random variables §;. As n — co, the Polynomial Chaos as defined
Previously is recovered. Obviously, the convergence properties of a representation

ased on the n-dimensional Polynomial Chaoses depend on n as well as on the
choice of the subset {£3; )%, out of the infinite set. In the ensuing analysis, this
choice will be based on the Karhunen-Loeve expansion of an appropriate random
Ptocess. Since the finite dimensional Polynomial Chaos is a subset of the (infinite-
dfmensional) Polynomial Chaos, the same symbol will be used for both, with the

'mension being specified. Note that for this case, the infinite upper limit on the
Summations in equation (24) is replaced by a number equal to the dimension of the

olynomials involved. For clarity, the twe-dimensional counterpart of equation (24)
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is rewritten, in a fully expanded form, as

s(0)= aoTo + ay (&) + a2 Ti(&a) (2)
+oan D& &) + a6, &) + anla(6,6) k
+ ay Ta(6n, 6, 6) + aan Faléa, 6,6) + ain Ta(€2,62.6)
+ am Ta(&.60.6) --. .

In view of this last equation, it becomes clear that, except for a different indexing
convention, the functionals ¥[.] and T[.] are identical. In this regard, equation (26)
can be recast in terms of ¥,[.} as follows

ul0) = ao¥o + 62V2 + 43¥; + 6.Ve + asV¥,
+ dgWe + a1V + agWs + GaWe +..., 2

from which the correspondence between ¥[.] and I'[ ] is evident. For example, the
term a3 ['a(€2,61, &) of equation (26) is identified with the term d7 ¥y of equatios
(27).

3.2.2 Construction of the Polynomial Chaos

A direct approach to construct the successive Polynomial Chaoses is to start with
the set of homogeneous polynomials in {£,(8)} and to proceed, through a sequence
of crthogonalization procedures. The zeroth order polynomial is a constant and it
can be chosen to be 1. That is

To = 1. (28)

The first order polynomial has to be chosen so that it is orthogonal to all zeroth
order polynomials. In this context, orthogonality is understood to be with respect to
the inner-product defined by equation (2). Since the set {£;} consists of zero-mead
elements, the orthogonality condition implies

N&) = &. (29)

The second order Polynomial Chaos consists of second order polynomials in {£;} that
are orthogonal to both constants and first order polynomials. Formally, a secon
order polynomial can be written as

I, .6,) = a0 + ai &, + 8,6, + 6,066y s (30)

where the constants are so chosen as to satisfy the orthogonality conditions. The
second of these requires tha!

(31)

|
o

<r2({-n£':) > =
This leads to the following equation

ﬂ.‘,&,‘"‘, + ai;&i,i, = 0. (32)
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Allowing i3 to be equal to i) and i, successively, permits the evaluation of the

coefficients a;, and a;, as
a;, =0, a, =20. (33)

The first orthogonality condition yields
ag + 8iiybii, = 0. {34)

Equation (34} can te normalized by requiring that

a,,, = 1. (35)
This leads to
ap = = &, - (36)
Thus, the second Polynomial Chaos can be expressed as
r:(fi,,fi,) = Eilfi) - 60’,!'1 . (37)

In a similar manner, the third order Polynomial Chaos has the general form

ri(ciutin{is) =65 + “ixfil + “iafi: + ﬂi,fﬂ, + °i|i:€ixiiz
Haiiba by + Bnnbnbi + hinabifnli, (38)

with conditions of being orthogonal to all constants, first order polynomials, and
second order polynomials. The first of these conditions implies that

<r3(6"l)€i11£i;)> = 0. (39)
That is,
a0 + Giinbiia F GiisSiris + Qi = 0. (40)
The second condition implies that
<r3(€i|!£l’u€i;) €5¢> =0 ' (4’)
which leads to
8, 8ii + @i, + a8, F iisiy <€iy &iy &, &> - (42)

The last orthogonality condition is equivalent to
<r3(€i1vfiz'£i:) &'. Cl's> =0 s (43)

'hich gives

a0 biiy iyia<€inbiaCiibis> + 8uis<€inbisbisbin>
+ iy <€y 6y & 6> =0 (44)



e

The above equations can be normalized by requiring that
iy = 1. {45)
Then equation (42) becomes

al,&iliq + ﬂ,,&.‘,"‘ + auéi)i. + <£n|<u£q<-.> = 0 (‘6)

Due to the Gaussian property of the set {;}, the following equation holds

<€ 666> = 8, + Siy b + 8iyibi, - (47

Substituting for the expectations in equations (46) and (44) yields

a¢,6;,.-, + Gi,éi,.‘. + a.,6;,.,
+ 5’1'26‘350 + 6!]‘) 6(:!'. + 6|,0.6|;i, =0 ' (‘8}

and

a0 Siis F Giriy | Giiabiciy + iicbiniy + 8iinbini, )
+ iy, [6‘|i)6ic"1 + 6;'.‘|6.',.', + 6"|536i3i0 ]
+ iy { 6iybisey + 6l + Siniiyi, | = 0. (49)

Substituting for ag from equation (40), equation (49) can be rewritten as

Qiyiy [631&65:"5 +5.‘,.‘,5;,.'. l + 6y [6.',.‘,6.',.‘, + 6‘:‘36"354 ]
+8ii; [ bizisbigiy + Gizibinic ] = 0. (50)

From equation (50), the coefficients a;,;,, 4;,;,, and a.,;, can be evaluated as

8, = 0 '
Qiyiy = 0 (511
a,i, = 0.

Using equation (49) again, it is found that
Gy = 0. (52)
Equation (48) can be rewritten as

6.'"‘.(0.', +6""3) + 6‘1"«(“51 + 6‘:‘3) + ailit(a‘l + 6‘:‘:) = {, (53)




from which the coefficients a;,, a,,, and a,, are found to be,

g, = =&,
e, = "61||; (54)
ay, = —6.'"’ .
The third order Polynomial Chaos can then be written as
rl‘(finf"a!f‘:) = & & &y — & 6izf: ol Sivis — & 6":-'1 - (55)

After laborious algebraic manipulations, the fourth order Polynomial Chaos can be
expressed as

i

€ & €ix & (56)
= & iz iy — &y &y 6.‘,.‘, = & &, buis

- & & 5.’,,‘, - & & 6-':": - & & ‘siliz

4+ Giiabiyie + Giiging + 8iilbiyis -

rl({i' ) 6'2 . Cl': * Eiq )

It is readily seen that, in general, the n** order Polynomial Chaos can be written as

¢ 0 . "
Yy ¥ JTa<Il 4>
»even 2(i1,....0n) k=1 t=r4l
n even
rP(f‘l""léiu) = 1 . (57\1
[ r n
(=Y JTéa<II &>
o ovan w(iy,...in) k=1 I=r4l
n odd

Wwhere x(.) denotes a permutation of its arguments, and the summation is over all
such permutations such that the sets {&,+--- &, } is modified by the permutation.
Note that the Polynomial Chaoses as obtained in equations (28), (29), (37), (55)
a1d (56) are orthogonal with respect to the Gaussian probability measure, which
Makes them identical with the corresponding multidimensional Hermite polynomials
i :‘d, 1949). These polynomials have been used extensively in relation to problems
orth“rbuleqce theory {Imamura et.al, 1965a-b). This equivalence is implied by the
ogonality of the Polynomial Chaoses with respect to the inner product defined

Y equation (2) where dP is the Gaussian measure c"*‘re d¢, where ¢ denotes the
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vector of n random variables {£,,)7_, This measure is exactly the weighing function
with respect to which the Hermite polynomials are orthogonal in the L; sense (Oden,
1979). This fact suggests another methad for constructing the Polynomial Chaoses,
namely from .the generating function of the Hermite polynomials. Specifically, the
Polynomial Chaos of order n can be obtained as

an 147
S APS 1 ¥ 3
36 a6

The ficst two terms in equation (25) represent the Gaussian component of the
function p(0). Therefore, for a Gaussian process, this expansion reduces to a single
sumrmation, the coeflicients a;, being the coefficients in the Karhunen.Loeve expan-
sion of the process. Note that equation (25) is a convergent series representation for
the functional operator A[.] appearing in equation (23). For a given non-Gaussian
process defined by its probability distribution function, a representation in the form
given by equation (25) can be obtained by projecting the process on the successive
Homogeneous Chaoses. This can be achieved by using the inner product defined
by equation (2) to determine the requisite cocflicienls. This concept has been
successfully applied in devising cflicient variance reduction techniques to be coupled
with the Monte Carlo simulation method (Chorin, 1971; Maltz and Hitzl, 1979).

r'\(él‘n"'vfta) = (-l)“ (58)

4. PROJECTION ON THE HOMOGENEOUS CHAOS

In this section the Karhunen-Loeve expansion and the Polynomial Chaos expansion
presented earlier are implemented into a stochastic finite element method which
features a number of similarities with the deterministic finite element method.
Specifically, the geometric interpretation of the finite element method as a projection
in function space is preserved.

Equation {6) constitute the starting point. Assuming that

M{x,w)[.] = o(x,0) R(x)[.], (59)
and expanding a(x,9) in a Karhunen-Loeve scries gives
M
(L(x) + Y & an(x) R(x)) [u(x,0)] = f(x,9). (60)

Assuming, without loss of generality, that u(x, ) is a second order process, it lends
itself to a Karhunen-Loeve expansion of the form

L
u(x,0) = 3 e; x;(0) b;(x), (61)

=1

where

/D Cuu (%1, X2) b)(x2) dx2 = ¢, b(x1) , (62)




and

WO = = [ ux,0) bx) dx. (63)

Obviously, the covariance function Cyu{x,, X;) of the response process is not known
at this stage. Thus, ¢, and 4,(x) arc also nol known. Further, u(x,8), not being
a Gaussian process, the set x,{0) is not a Gaussian vector, Therelore, equation
(61) is of little use in its present form. Relying on the discussion concerning the
Homogeneous Chaos, the sccond order random variables 3 ;{(0) can be represented
by the mean-square convergent expansion

x(0) = aP Ty + Z ) Iy

), Ta(&,.6,) + Z 5 Za.‘:.’,.; Tal€ir, 6.6y

1=1 1=l =

™8
[v)-

<+

#
#

1y 173

t iy

Z Z all Tl o b by E) + (64)

Ms
..‘M

I}

where a(’) .ip are deterministic constants independent of 8 and Tp( &, , .., &, )
is the p”‘ order Homogeneous Chaos. Equation (64) is truncated after the P
polynomial and is rewritten for convenience, as discussed in equation (27), in the

following form,
p

i) = ¥ 2 eey), (65)

where =) and W,{{£,}] are identical to am 1y and Tp(€,,...6,), respeciively. In
equation (65), P denoles the total numbcr of Polynomial Chaoses used in the
expansion, excluding the zerath arder term. Given the number Af of terms used
in the Karhuncn-Loeve expansion, and the order p of Homogeneous Chaos used, P
may be detcrmined by the equation

s

(M+r). (66}

.°'I~

+ 31

“

4]
Subsmutmg equation (63) for x,{0), equation ( 1) becomes
L

=5 Z P W {E ] o(x) (67)
1=3 =0
Where
olx) = e¢; b{(x). (68)

Changing the order of sutnmation in equation {67) gives

u(x,0) = Z LAIS }5: 2 ¢, (x)

120




76

P
= Y vl[{&di(x), (69}
where,
L
dix) = 3 ¥ e(x). (70)
k=1

Substituting equation (69) for u(x,8), equation {60) becomes

s

A P
(L(X) + 2 & anlx) R(X)) [Z ‘%l{é.}ld,(x)] = flx}), (M)

where reference to the paramcter 8 was eliminated for notational simplicity.

The response u(x,0) can be completely determined once the functions di(x) are
known. In terms of the eigenfunctions b,(x) of the covariance function of u(x,4),
d,{x) can be expressed as

L
dix) = 3 e b(x)

[

-

vy by(x) . (12)
=4

Equation (71) may be written in an alternative form

P P At
VUGN LX) [dy(x)] + 3 Y & VG R(x) [dy(x)] = f(x). (73)

=0 =0 =1

This form of the equation shows that d;{x) belongs to the intersection of the domains
of R(x)[.] and L(x)[.]. Then, following the standard deterministic finitc element
method, the function d,{x) may be expanded in an appropriale funclion space as

N
dx) = 3 di, ailx). (74)
k=1
Then, equation (73) becomes
P N
T 3 diy Y{E L(x) lo(x)] (75)
1=0 k=i

P M N
+ 30 2 GO V{6 3 diy R(x) lax)] = fix).

1=0 =1 k=t

Equation (75) may be rearranged to give
P

> ¥ dy [ 6] Lix) lge(x)]

1=0 k=)

M
£ 3 60 V(6 )] Rix) wx)}] = 109 (16)
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Multiplying both sides of equation (76) by gi(x) and integrating throughout yiclds

Z dy, [‘1' ! / L{x) {g(x)] gi(x) d

,-o k=t

+3 6 ) R ol ol .zx]

= /D X)) dx .l = 1,.. N, (77)
Setting
Lu = [ L(x) )] au(x) dx (78)
Rue = [ ROx) [ga0)] ailx) auf) dx (79)
= /D f(x) gl(X) dx s (80)

equation (77) becomes

M
L Z [‘I’:Hfr}] Lu + z_: &(0) ¥;[{&}) R;u] di,
= rl 3 l= 1,...,N . (8})

Note that the index j spans the number of Polynomial Chaoses used, while the
index k spans the nuiber of basis vectors used in C™. Multiplying equation (81)
by ¥ [{¢, }]; averaging throughout and noting that

<BHEN ¥ml{6)]> = 6m <¥LUHE)]> (82)

one can derive

P N Af
Z<‘I’2 {&H>Ludim + 33 de, Y <&0)0,[{& H¥ml{&- }]>Rint

=0k=1 =]
=<V l{&}> = 1,....N,m =1,...,P. (83)
Introducing
Gm = <& V{6 Yml{& > (84)
and assuming, without loss of generality, that the Polynomial Chaoses have been
Bormalized, equation {83) becomes

N
Z LH dlm + Z z dk; Z R:kl CI)"I = <rl m[{{r}]> ’
k=1

J=0 k=}

{ = ,....N, m=1,...,P. (85)




For a large number of index combinations the coefficients c,,.. are identically zero,
Equation (84) was implemented using the symbolic manipulation program MAC.
SYMA (1986). Forming cquation (83) for all P values of m, produces a set of N x P
algebraic equations of the form

(G +R|d=h, (85)

where G and R are block matrices of dimension N x P. Their mj'* blocks are
N-dimensional square matrices given by the cquations

Gm, = ém L, (&%)
and
At
R-m) = Z Cijym Ri . (88)
=1

In equations (87) and (88), L and R, denote N-dimensional square matrices whose
ki'® element is given by equations (78) and (79), respectively. In equation (86), h
signifies the N x M vector whose m** block is given by the equation

h = <f Va[{&}]>. (89)

The N-dimensional vectors d,, can be obtained as the subveciors of the solution
to the deterministic algebraic problem given by equation (86). Once these coeffi-
cients are obtained, back substituting into equation (69) yiclds an expression of the
response process in termis of the Polynomial Chaoses of the form

w= Y 4wl (90)

=0

Based on equation (90}, realizations of the random respouse veclor can be computed
from realizations of the random variables {£,}. Also, statistical moments of the
random response vector can be evaluated using the inner product defined in equation

).

5. Numerical Examples

The preceding development of the stochastic finite element method was applied
to a2 number of problems from engineering mechanics. The first step in the solution
of any of these prablems was the solution of the eigenvalue problem associated with
the Karhunen-Loeve expansion. Following that, the coefficients in the Polynomial
Chaos expansion for the solution process were computed. Finally, various statistics,
as well as the probability distribution of the solution process were numerically
evaluated. Figure (1) shows a thin plate whose modulus of clasticily is assumed to be
a two-dimensional random process. The plale is analyzed using the stochastic finite
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Figure 1: Plate with Random Rigidity; Exponential Covariance Model.

element formulation described above. Figure (2) compares some of the coefficients
in equation (90) for various levels of approximation; note the excellent convergence.
Figure {3) shows the variation of the standard deviation of the response against the
standard deviation of the malerial property again for various levels of approximation.
Finally, figure {4) shows the probability distribution of the response variable at the
Iree corner of the plate.

6. Conclusions

A method [or the solution of differential equations with random ovrocesses as co-
efficients was discussed. The method relics on viewing the raudom aspect of the
problem as an added dimension, and on treating random variables and rro-esses
as functions defined over that dimension. In this manner, a formulation for the
stochastic finite element method was derived which could be construed as a natural
extension of the deterministic finite element method. Finite element representation
along the random dimension was achieved via two spectral expaisions. One of them
was used to represent the coefficients of the differentiai equation which model the
tandom material properties, the other was used to represent the random solution
Process. The new concepts were implemented using a number of computational
models for simple engineering systems. The convergence of the discussed approx-
imations was demonstrated numerically. Probability distribution functions of the
Tesponse variables were obtained.

The present formulation can be viewed as a definite step towards a unification
of various finite element techniques. Indeed it consists of generalizing the concepts
of finite element approximation to abstract spaces, of which the usual euclidian
Space is a special case. The deterministic case can then be regarded as a cigression
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0.433; Expouential Covariance; Polynomial Chaos Solution
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of this formalism Lo the particular instance when the space of elementary events
consists of a single element, and where the probabilily density function induced on
the associated o-algebra is the uniform distribution.
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Pseudo - Simulation Method for Stochastic Problems

B.A. Zeldin!, P.D. Spanos?

Abstract

A new numerical method for problems of stochastic mechanics and other areas involving 8 small
number of tandom parameters is presented. It is analogous 10 the Monte-Cario simulation method and
quite more efficient. As an example, the eigenvalue probiem of a clamped-clamped beam with random
ngidity is considered.

Key words: Monte-Caslo method, Finite Element method, Finite Difference method, parution,
sample space, eigenvalue problem, mean value, standard deviation.

Introduction

The Monte-Carlo simulation method has been widely used in the area of stochastic mechanics and
others fields, primanily because of its versatility This method treats a stochastic problem as an ensemble
of deerministic ones. After solving a number of deterministic problems, statistical analysis is performed
10 deduce the necessary parameters characterizing the random nature of the solution. Often this method
1 the ondy option available to solve complicated stochastic problems. However, indiscnminate use of
the method can not be advocated due to its considerable computational cost. In thig paper a new numer-
«al method for stochastic problems 1s presented. In essence, it is a Monte-Carfo simulation method uu-
lizing & limited number of random variables.

Formulation
Consider a problem govemed by the equation

L&) u = £(5). m

where & = (£, .. ...8,,) is a random vector, L (8} is a mathematical operator describing the perfor-
mance of this system which depends on §. Further. f(§) depends on the same parameter set and
descnibes the load. The number M is assumed to be small, and §,, §,. ...§,, are staustically independent
random variables.

Solving equation (1) is equivalent to finding some function & = u () which satisfies this equa-
tion. That is, for every realization & = (§,.&,, ...E,) of the random vector § there exists a determinis-
ti function u (§) which satisfies the equation (1),

Consider the space B of &, x &, X ...&,, as the sample space Q This space can be divided into N
sbdomains Q, i=1,...N having the shape of M-dimensional disjoint rectangles with prescnbed proba-
bility mase. Next introduce the set of functions g;, i=1....N such that

, i QO
?,(8) = i ge, ' o]
0, otherwise
Clearly, sirce @, (§) and tpj(_t) have disjoint suppont, unless i » j,

14(5)0,.@)9,(;);’_{(;)4; a0 if iwj, 3
where p, (8) is the probability density function of £, and g (&) is an arbitrary random vanable. This

means that the set {@,} f’_ \ is orthogonal with arbitrary weight basis for the class of random varisbles
which are constant for every Q..

1. Research Assistant, Civ.Eng., Rice University, PO.Box 1892, Houston, Texas 77231
2. L.B.Ryon Chair in Eng.. Rice University, PO.Box 1892, Houston, Texas 77231,
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The scluuon of equation (1) can be approximated by the senes
N

u(E) = Zc,v,@) . O]

ta}

where u(§) is assumed to be an adequately smooth function of €. Nexs, the scalag product of (w0 ran-
dom variables a and b can be introduced by the equauon
Elab] = {a,b). {3

Then. the solution given by equation {4) can be constructed ss a projection of the exact solution 1nto the
space Sp {9;} {‘_ ' Thus, the following sequence of equatons can be written

L4
LOY o 0).0,0)) = (©).0,@) . 6)
-l

which, because of equations (3) and (5), leads to

E(L{f) e, (5)) = EUD 9 (5)]. m
This sequence of deterministic equations can be solved to determine the solutions ¢,. Upon determuung
¢;. the statistical properties of the solution can be estimated by relying on equation (4). Specifically.
» ~

E(u(f)] = Yep ad El(8)] = ):c}p, . @

iml im

whete p, = E[9,(§)] = E19] (D).
I L(E) = T L,P,(E), where P, (E) is some known function of € and L, is linear, equation
(6) teads to the simple: expression

anC.ElP.(_E) ?,(5)] = EU(B 9, (8)]. ®

Finite Element Method - Pseudo Monte-Carlo Perspective

Examining the proposed method cne may view it as 8 Finite Element method for random media,
That 13, it involves approximations of the random variables in the finite dimensional subspaces defined
by some finite partition of the sample space.

From another perspective, exanuning equation (7) one can deduce that this equation is equivalent
to the following

J LB e ~f(R))py(§)dE = O. o

1f the Lebesgue integral involved in equation (10) can be interpreted in the Riemann sense and ai} quan-

tities 1 the above expression are adequately smooth, the mean-value theorem states that there exisis
some § € 0, such tha

LiEye, = f(&). ay

This equation shows that ¢; represent just a solytion of equation (1) for the realization § of the random

vector €. Then, the sequence of the equations (7) can be interpreted as a sequence of Monte-Carlo sim-

ulations. In fact. this sequence of "pseudo-simulations” is optimal in the sense that every element of thus

sequence represents a cenain region of the sample space and can be interpreted as the only owtcome
with given probability.

For the implementation of this method, first the entire sample space 1s divided into some assembly
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of subsets, the mesh of events, with given probability mass. Then, cenain efemerus are chosen from
every subset, and the sequence of equatons (1) 1s treated as a determmsuc one. It is further assumed
that these elements of the sample space tepresent a realization of the random vector §. Then, staustical
analysis 15 conducted assurmung that the denved determirustic solutions are the only possible outcomes
with given probability. 1t is clear that this algonthm relates to the Monte-Carlo method Thus, it should
work at least as well as the Monte-Carlo method. Further, it exhibits the appealing feature of choosing
the points from the subsets in an optimal way, namely 1n the sense of the projection represented by the
equauon (6).

Example: Eigenvalue Problem for 2 Beam

The proposed method was applied to the eigenvaiue problem of a clamped-clamped beam of unt
length; its ngidity 15 a truncated normal random process with mean equal 1o 1 and sutocorrelanon func-
tion

2 (-'1 - Xl) 2
Ry (x). xy) = dlexp(-——m).
Thecase with o = 0.3 and c=0.5 was taken. The corresponding equation is

(ET(x)u")* = Au, (12)
with boundary conditions «(0) = (1) = &’ (Q) = ' (1) = Q..

This kand of problem is quite difficult esther for an analytical or for a numesnical treatment. Only a
few papers are available on this topic. A description of perunent analytical methods was presented by
Bruce(1968). In the papers of Hasselman and Han (1972), and Grigoriu (1991) some numerical exam-
ples of solution of stochastic eigenvaiue problems can be found. However, these algonthms can be
wpplied in the case of small randomness only and can be computationaliy costly.

In implementing the proposed method. first the discretization procedure s applied 1o obtan a finite
dimensional problem. For this purpose the Finite Difference method. see also Spanos and Zeldin (1992),
is used. This leads 10 the equauon

Au = Ay, (13
where A is a matrix with random vanables as elements and u is a random vector. Subsequently the Kar-
hunen-Loeve expansion, see also Ghanem and Spanos (1988.1991), can be applied 10 represent the
matnx A i the form

A=A+ A+ LA+ .. (14)

where £, &,, ...£,. ... are staustically independent random vanables. The series in equation (14) can
be truncaled beyond order M, and the random vector § = (£,.§,, ...&,,) can be introduced. Next. the
random domain is divided into a set of rectangles

Fe (EESESE 1=l..M, j=1..N)
of prescribed probability mass. Then, the basis {¢,} f’_ , can be constnicted to conform with equauon
{2). Next. u and A can be taken in the form

N N

“@ = Yo 8. 2@ = Teod . s

Substituting equations (14) and (15) into equation (13), multiplying it by ®; (&) , and talung the mathe-
matical expectation of the result yields

(Ag+83A ¢ ELA Dy mcy, . i=l N, (16)
where £f = p'l-.lf.%(g)[’;(g) d§ = ‘—:;Jﬁpl(g)dg andp, = l[v.(;)l’;(_ﬁ) df = jpg(g) dat.

Finally, statisucal analysis can be performed in conjuncuon with equation (8) to estimata (he moments
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of the first two eigenvalues and eigenvectors.
Numerical Results - Concluding Remarks

The theoretical values of the first two eigenvalues for the deterministic case, when the beam ngidity
is set equal to the mean rigidity of the problem under consideration, are Af™ w 22.37 snd
Ad* = 61.67. The comrespordling determinisuc finite difference spproximation with 41 node ponts
gives AT w 22.32 and AL = 61.33. It was found that despite the considerable vanability in the
rigidity of the beam, the vaniability in the eigenvectors is negligible. However, the varisbility in the
eigenvalues is essential and for @ = 0.3, as in this example, is of the order of 10%, see Figure 1. The
influence of different &, was studied. It was found that for this problem the third term in equation (16) is
almost negligible. The results in terms of convergence of this method for different order of pantition of
axis £, and §,, that is for different numbers of pseudo-simulations, are plotted in Figure 1(a) for the
standard deviation of A, and in Figure 1(b) for the standard deviation of X,. It is seen that this method
gives quite good approximations even when the number of pseudo-simulations it very small, whereas
the Monte-Carlo method yieids reliable results only if the number of the simulations used is [arge. The
mean of the first and second eigenvaiues was found to be 21.98 and 60.40, respectively. Thus, the mean
values slightly decline to smaller values compared to the deterministic case.

It sppears that the discussed method can be applied for treating a wide class of problem dealing
with random variables and stochastic processes. Thus, further research might be warranted.
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Stochastic Mixed Finite DifTerence Method
P.D.Spancs’, B.A. Zeldin?

Abstract

Some aspects of numerical solutions of stochastic s problems are considered. The Finite Differ-
ence method for discretization of stochastic continuous media pmb!um is discussed. The Neumann expan-
sion and perturbation methods used for solving the asscciated system of algebeaic equations are analyzed
Their dependence on the mesh size of the discretization is investigated. It is shown that a mixed formulation
using both strain and stress as independent veriables improves the performance of these methods and reduces
thexr dependence on the mesh size. .

Key words: random variable, randora process, Finite Element method, Finite Difference method, beam
equation, pertubation method, Neumann expansion, convergence.

Introduction

Recently, considerable attention has been given to the solution of engineering problems with randomness
in the spatial domain, Clearly, the spacial dependence hinders solving these problems exactly. Thus, spproxi-
mate methods of solution have been pursued. The main idea has been 10 implement the well known and
widely used Finite Element (FEM) or Finite Difference (FDM) methods. A numbes of papers have appeared
recently on this topic addressing linear of nonlinear and static or dynamic problems;, see for example Ghanem
and Spanos(1988,1991), Liu WK ,etal.(1986), Vanmarke and Grigoriu(1983), Takads (1990), Yamazaki,
et.al (1986).

Usually such an analysis involves two steps. The first step is to inroduce some discretization of the con-
tinyous medium problem, which leads to a system of stochastc algebraic equations; the second step addresses
the solution of this system.

In this paper some new aspects of solving continuous media problems with randamness in the spatial
domain using FDM are considered.

Discretization Techniques

Several differens techniques foc random problem discretization have been developed. Typically they use
the following random field representation

HORD XAAOL 't

1
where f (x) is a random field, ¢, are random variables, and v; (x) are basis functions built upoo some appro-
priate partition of the problem. and Spanos(1988,1991) used this form for stochastic field representa-

tion with basis functions from Kurhunen-Loeve expansion. Afteg such a discretization in the random domain,
the Finite Flement procecure was spplied. Alternatively Takada (1990) and Deodatis, e1c.(1991) used the so
calied Weighted Integral method which is straightforward application of FEM to the random problems.

Interestingly, stochastic FDM has not received much attention. In the deterministic case often FDM has
some advantage over FEM due (o simplicity in formulation snd analysis. The same can be said concernung
stochastic problems. A similar formutation was inroduced by Vanmarke and Grigoriu (1983) for the simple
case of 8 statically determinant shear beam,

A Finite Difference spproximation for a differential operator is next discussed. Lez u (x) be a stochasuc
process. Then, the mean-square desivatives of u(x) in some point x; can be approximated by using the cen-
tral difference formulae

1. L.B.Ryon Chair in Engng., Rice Univ., PO.Box 1892, Houston, Texas 77251.
2. Graduste Student Civ. Engng., Rice Univ., P.O Boz 1892, Houston, Texas 77251.
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U, =4 2 u,

d el i d iv]
Lu(x) » ——: ——u(x ) » ——————
dx ) 2h de ' h2

-2u +u
1 -t @

where u, is & random varisble equal to u(xi) and h is the mesh size of the parution involving N+1 riodes.
Using these equanons the beam operator Lu (x) = (EI{x)u" {x}) can be aproxunaiad by the equs-
tion

1
Lu(x.l) -F (BY,_ 4 o+ (-2(EL_, +EL))y; |+ (EL_, +4EL &El“])u‘

—I(Ell"'glhl)ulol*glhluioz) . 3)

where x; are nodal pouits, i=0,1,..N.

Appending to equanon (3) the corresponding approxumations of proper boundary condiaons, & system of
linear stochastic algebraic equations can be formed. Specifically,

Av = | (4)

whese A is 8 mamix with random vanables as elements, u it a random vector of the soluton, and f 13 a vector
of load which in general is random.

Solution of the System of Algebraic Equation

The solution of the problem described by equation (4) is crucial in computational stochasic mecharucs.
Several methods have been developed for this purpose. One of them is the Monte-Cario sunulsuon method
which has been widely used. This method was incorporated in FEM by Shinozuka and tus associates (1972),
who developed an algorithm for the stochastc field simulauon. A recent umplementanon of thus method
includes the Neumnann expansion of matrices inyoduced by Yamazais et al (1986). However, this method
may demand large compuiational resources. Another quite common method relies on & pernurbation expan-
sion which provides sufficiently good results when the randomness is not very large (Takada(1991), Liu
e.81.(1990)). Otherwise this method can give ervoneous results.

Alternanively, the Neumann expansion method can be utilized. In fact that 1s some sort of generalization
of the perturbation method. It was used by several invesugatons such as i1 Ghanem and Spanos (1988
1991), Adomian and Maikian (1979) and Yamazaki, er.al. (1988). Let the mamx A in the equation (4) be
expressed a3 A = As+A W AO-(A)mA A w A=A, . Subsuniung thisexp o equs-
tion (4) and multiptying it by Aa qives

U*Agﬂ)u-AJI_ )
Purthey, it is possible o introduce the foliowing equahty
-
- nkeacta K-t RPPTLIL A1, 2,41
i ):( D (AG A) AG'f = AG T~ AG AAL [+ (AGA) Ayl . &)
ka0

Equuo.nl (6] has only a formal mearung as 1t s assumed that this senes converge (O
{1+Ay A) Ag [ . Examunanon of this reveals that the convergence problem 1s iot a mvial one. One of
the sufficient conditions for this is the following simost surely tnequality

llasiall<q<t. m

Noxe that the condition given by equation(7) is too resmctive and difficult for snalysis. Adomuan and Malk-
ian (1979) considered linear differential operator L = Zli (‘%) with randomness in the fastcoefficient ag.
Convergence of these series was proved and the esror of truncauon was esumated in that case. However, in 8

number of papers this method was applied even when other coefficients .. i=},.. N were random; see Gha-
nem and Spanos (1988,1991), Adonuan (,1979), Yamazaki and eic.(1988) It 1s not difficult to note that for
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size. Thus, for the beam problem the norm may grow a3 1/h”.

One can show that the perturbation method represents the Neumann expansion truncated to the first 2
terms. Then, it can be concluded that whenever the mesh of the discretization is sufficiently smatl, both the
perturbation and Neumann expansion methods of solution of 2 system of algebraic equations may behave
pocrly due to the unboundedrniess of the differential operator.

Mixed Method

1t is possible (0 oOvercome the convergence obstacle using the coacept of Mixed FDM. The applicability
of this concept has been demonstrated for the solution of deterministic problems with non-smooth coeffi-
cients. In fact this method ailows the elimination of non-smooth coefficients in the left hand side of the differ-
ential equations descnibing the problem. Thus method can be helpful and for the stochasuc case where it is
necessary 10 find an algontm allowing the use of the Neumann expansion procedure. Indeed, for the beam
problem the new varisbles v, (x) = u(x) and v, (x) = Elu” (x) can be inroduced. Then, the beam
equauon can be written in the form

contnuous problem cperator d/dt is not boTnaeF_ l for discrete it behaves as I/, where h is a mesh
A A

vi-Bveq. )
t
— 0
wherev-(:;),a. °El(x) andqm= lq(!))'
o 0

As one can see from equation (10), the random coefficient of this equ’n'_ 15 associated with g term
which does not involve differentianon. Therefore, the dependence of " AE) Aoﬂl on the mesh si1ze can be
avoided.

To show the applicability of the method discussed, consider a clamped-clamped beam subjected to deter-
ministic force g=1 with the bending rigidity being 3 normat random process as shown in Figure 1. The bend-
ing of this beam c¢an be descnbed by equauon (8) with boundary conditions vy (0) = \f (D=
=v" (0) = v \ (1) = 0. To solve tus problem. FDM can be spplied, it results in an equation sumilar to
equation (4). Consider a case where
(I: - X,) 1

k{x) = k(x)) =1 and  (k(x)k(x3) = o? exp(-

1
Ei(x) * ¢
where 0 = 0.3 and ¢ = [.0. Meshes with 10 and 20 nodes were chosen. The second statistcal moments of
displacement and bending moment were caiculated based on the expressions

M
2
- ~ t
Cov( = W= T (g R ARG ((ag' M) ) )= e, ©)
kelao0dd>0

M,

where @) = T (-0*(caglA) *ag'n.
k-o

The performance of these statistical moments with respect to the arder of the tuncation was investigated. The
results obtained {or variance are plotied in the Figure 2. It is seen that the mixed formulation improves the
convergence of Neumann expansion and removes its dependence on the mesh size. These results are not
affected by the parution and even the first order perturbation method is acceptable. This is especially true with

gards to the displ variability even if the coefficient of variation of the beam rigiduty is large. How-
ever, the bending moment variance performs poorly compared to the displacement one and the second term of
the expansion ($) should be used. It is seen that 30%. approximately, of the vaniability of the beam nigidity
induces 10%, approximately, for the coefficient of vanation response. That coincides with other results (Gha-
nem and Spanos (1988,1991)).
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INDIRECT SAMPLING METHOD FOR STOCHASTIC MECHANICS

PROBLEMS
P.D.Spanos’ B.A.Zeldin?

INTRODUCTION

The Monte-Carlo simulation method has been widely used in the field of stochastic mechanics and
others fields, primarily because of its versatility. Often it is the only option available to solve complex
problems. However, indiscriminate use of the method can not be advocated due to its considerable com-
putational cost. In fact, several variance reduction techniques have becn developed in this regard. They
involve importance sampling, stratified sampling, and others [1].

A numerical method for problems of stochastic mechanics and other areas representing the solution
by a small number of random parameters is presented. In essence, it is a stratified sampling method, but
more efficient. Alternatively, this new method can be viewed as a Galerkin approximation in the sample
space. Several examples are considered involving the use of the Loeve-Karhunen expansion for stochas-
tic fields approximation [2,3]. The examples deal with the evaluation of natural frequencies and seismic
response of bearns with random rigidity.

FORMULATION
Solution Representation
Consider a problem with random parametérs governed by the equation

L& u'=f(&), o))

where & = (I:l. &2 & 4} 1s a random vector, and L(&) is a mathematical operator describing the
performance of the system. Further, f(&) describes the load, and &1. ’g’z,. E 4 e statistically inde-
pendent random variables.

. Solvmg eﬂuanon (1) is equivalent to finding a function u = u (&) such that for every realxzatxon
4 = (& 1€ a...8 M) of the random vector & there exists a deterministic function u (5 ) which
sansﬁes equation (1). Consider the space RM of E 1% E, x . l§ as the sample space Q2 This space can
be divided into N subdomains or sirata {Q i=1, N } havmg the shape of M-dimensional disjoint
rectangles with prescribed probability mass as shown in Figure 1 for M=2. Next. introduce the set of
functions or spline basis {‘pi' i=1,,..N} suchthat

I, if Ee
¢1(§) = { i , ! . (2)
0, otherwise
Clearly, ?; (&) and ?; (&) have disjoint supports. That is,

lq(g)oi(g)cpj(g)pg(g)dg =0 i i%j, 3)

where p, (€) is the probability density function of £, ¢ (£) is an arbitrary random variable. Thus, the
set {tpi,“i =1, ...N} is an orthogonal basis for the class of random variables which are constant for
every Q.. Any random variable can be approximated adequately by the use of these basis functions,
provided the partition of £ is fine. The solution of equation (1) can be represented as a linear combina-
tion of the functions {opi=1.N}t. That is,

u@ =y <o, @, @

1. L.B. Ryon Chair in Engineering, Rice University, P.O.Box 1892, Houston, Tx 77251
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where the coefficients ¢; are to be determined.
Then, the solution given by equation (4) can be construed as a projection of the exact solution into
the space spanned by (cp i=1,...N}. Expressing the solution in the form of the equation (4), the

induced error in the equauon (1) can be made orthogonal to the space spanned by {®, i=1,. N},
That is, using the operator of mathematical expectation, < >, it can be found
N
@@ Y o (B @N=¢(@e &), Jj=L..N ©)
im]
which, because of equation (3), leads to
LB e@?®) = FE&e,E) . ©)

This sequence of deterministic equations can be solved to find the coefficients ¢ ;- Upon deriving
¢;. the statistical properties of the solution can be estimated by relying on equation (4). Specifically,

N
@)=Y cp; and W) = Z Zp ™
i=] i=m]
where
pi= (@ (®) = (22(&) . @®)
Similarly, the distribution function of the solution can be found using the equation
P ,(v) = Pr(u<v) = Z x, () p;. 69
im]
where
1 ifx<gv
x,(x) = {0 (10)

. if x>v'
Solution Interpretation '

The proposed method may by viewed as a Galerkin-type procedure for random media. Several
authors have explored the idea of using projection procedures in conjuction with random variables. In
references [2.3.4.5,6] this procedure has been applied for stochastic mechanics problems with random-
ness in the spatial domain. Due to the correlation between the solution and the random parameters
describing the properties of the structures, this class of problems is especially difficult to solve. In this
regard, the stochastic field has been discretized by the use of the Loeve-Karhunen expansion in refer-
ences [2,3.4] or of the midpoint method in reference [5]. In this manner the problem is first character-
ized by a finite set of random variables. Then, the solution can be derived by a Galerkin projection into
finite dimensional spaces spanned by orthogonal chaos polynomials as in references [2.3.41, or just lin-
ear functions as in reference {51. However, these bases can yield a large order system of equations which
must be solved to determine the solution.

Another possible basis for the representation shown in equation (4) is given by equation (2); see
also reference [6]. The concept of using spline type approximation has been discussed widely in the area
of computational mechanics in connection with the finite element method. From this perspective, the

system of functions {9}/ N represents the simplest spline of piecewise-constant functions. Then, the
proposed method mvolves approxnmauon of the random variables in the finite dimensional subspace of
splines defined by some partition of the sample space. Additional advantages of this representation
relate to equation (3) since each term c; in the expansion (4) can be found independently. Therefore.
every term ¢; in equation (4) can be readily determined.




From another perspective, the use of piece-wise constant functions makes this method a general-
ized sampling procedure. Indeed, examining equation (6) one can deduce that this equation is equivalent
to the following

r( [L(E)e;=f(E)1pg (&) dE = 0. (11)

If the Lebesgue integral involved in equation (11) can be interpreted in the Riemann sense and al*l perti-
nent quantities are adequately smooth, the mean-value theorem states that there exists some & € Q,
such that

L(E)e, = f(E). (12)

This equation shows that ¢; represents just a solution of equation (1) for the realization §* of the ran-
dom vector £. Then, the sequence of equations (12) can be interpreted as a sequence of samplings. In
fact, this “indirect sampling™ is optimal in the sense that every element of this sequence represents a cer-
tain region of the sample space and can be interpreted as the only outcome with a given probability.
Moreover, as £ € Q. the proposed method can be vicwed as analog to stratified sampling [1]. But
unlike the stratified sampling method the point inside every stratum is computed to make s~me error of
the approximation of the given numerical problem (1) orthogonal to the chosen space and ininimal for a
given stratification.
To show this properly regression analysis can be applied [7). Any random variable © (£) whichis
a function of £ on the sample space can be estimated by ® using the set of randor1 variables
{o,i= 1,...N} defined by the equation (2), where © is an arbitrary function of {o,i=1. N}
rather than &. This estimate provides a minimal variance for the difference © — ©. That 1s

((O-6) >is minimal, (13)

It can be shown, that as { ?; i=1,...N} are indicator functions of disjoint sets. the estimate ® can be
f-2ind using linear regression analysis and the solution can be expressed as

0= Z 8,9,(8) . 14
i=0
where 8, = (9 Q,) = (©¢,) .and <I> denotes conditional expectation
Let u (&) be the exact soluuon of the equation (1), and let & be an approximation of this solution.
Define the error of such an approximation by

e=LE)u-LEu=LEu-f(&). (15)

Then, the estimate & of € can be derived using equation (14). If the approximation Z is taken from a
system of equations (3), then £ = (. Thus, the proposed method ensures that ti> error defined by the
equation (15) has a zero mean square estimate from the indicator functions of chosen stratification.

Related perspective can be generated using some algebra concepts [7). The vector £ defines a
sigma-algebra G in the sample space, and the stratification shown in Figure 1 defines a more coarse
pure atomic c-algebra G; © G with indicator functions {9;,i=1..N}. Then, the above regression
analysis applied to the error ¢ leads to

€)=0 . &=(G)=0. (16)

In other words, this method yields the minimal error defined by equation (15) with respect to the coarse
o-algebra of given stratification,




EXAMPLES

Preliminary Remarks
The proposed method is applied for the analysis of the dynamic behavior of a beam of unit iength,
The beam problem can be described by the equation

(ET{xyu” (0, 0))” = gq(x. 1), ¢¥))]
where u is the beam deflection, and ¢ denotes the distributed force acting on the beam which in general
is taken as a stochastic process. The symbol Fl(x) denotes the beam bending rigidity which is assumed
to be a normal homogeneous stochastic process with mean equal to 1 and autocorrelation function

(xz—xl)z)

Rpi(x).xy) = ozexp(———-~-—c~~-~ . (1®

where o and ¢ are constants. Thus, randomness is manifested in this problem through the operator and
the load.

In implementing the proposed method. first the approximation of the stochastic field EI(x) through
a finite set cf random variables is derived. For this purpose, the Loeve-Karhunen expansion is deemed
especially effective. It is an optimal, in the mean square sense, representation of the field over the set of
random variables. Subsequent application of the finite difference scheme [8] or of any alternative dis-
cretization scheme leads to the system of linear algebraic equations

(Ag+ & A +..E A =f 19

where A}, A,, ...A,, are matrices the dimension of which depends on the number of nodes used for the
discretization, « is a vector representing the solution at the nodal points, and f corresponds to the force.

Next, specific numerical examples of application of the proposed method are presented; the numer-
ical values o = 0.3 and ¢ = 0.5 are used.

Beam Eigenvalue Problem.

The eigenvalue problem of a clamped-clamped beam is considered first. Then, the force in equation
(17) takes the form ¢ (x) = Au(x) . This kind of problem is quite difficult either for an analytical or for
a numerical treatment. Only a few articles are available on this topic. A description of pertinent analyti-
cal methods was presented by Boyce [9]. In the papers of Goodwin and Boyce[10], Hasselman and Hart
{11} some numerical examples of solution of stochastic eigenvalue problem~ can be found. Note, that
these algorithms can only be applied in the case of small randomness and can be computationally costly.

In implementing the proposed method, the random domain is divided into a set of rectangles

(gs<E < gl i=l..M; j=1,.N} of prescribed equal probability mass. Then. the basis
{(p‘.. 1= 1... N} can be constructed to conform with equation (2). Next, u and A can be expressed in
the form
N N
“® = Y v, and AE) = ¥ o8 (20)
im] im}

Substituting equations (20) into equation (19), multiplying it by P (&) . and taking the mathemati-

cal expectation of the result yicias
(A0+§1.I.AI+“.§M".AM)yi =cv, . i=l, . .N, 21

where
1 1
«Ek',=pir[z&kcp,.(&)pé(é)«/&=rir{&‘p§(£>d& coand - ppe fp(B)dE QD)

Finally. statistical analysis can be performed in conjunction with equation (7) to estimate analyti-




cally the moments of the first two eigenvalues and eigenvectors.

The theoretical values of the first two cigenvalues for the deterministic case, when the beam rigidity
is set equal to the mean rigidity of the problem under consideration. are Ad¢t 2 2237 and
Ade! = 61.67. The corresponding deterministic finite difference approximation with 41 npode points
gives lfl""d‘f = 22.32 and Kfz‘"‘d"f = 61.33. It was found that despite the considerable variability in the
rigidity of the beam, the variability in the eigenvectors is negligible. However, the variability in the
eigenvalues is essential and it is of the order of 10%: see Figure 2. The influence of different number M
of used random variables 5‘. has been studied. It was found that for this problem the contribution of the
terms beyond 52 in equation (19) is negligible. The results in terms of convergence of this method for
different order of partition of axes £, and £, . that is for different values of number N or indirect sam-
plings, are plotted in Figure 2(a) for the standard deviation of A, .and in Figure 2(b) for the standard
deviation of A, 1t is seen that the proposed method yields quite good approximations even when the
value of number N is quite small. However, the Monte-Carlo method, that is when the parameters were
sampled arbitrarily, yiclds reliable results only if the number of the used simulations is large.

Beam Response to Deterministic Load.

The second problem involves continuous systems with random parameters exposed to deterministic
excitation. Specifically, the dynamic response of a cantilever beam to earthquake-type base excitation is
coasidered. In this case the force term in equation (17) can be expressed as

g(x, 1) = ag(l) =i (x, ) —au(x 1), 23)

where « is a coefficient of damping, u represents the displacement of the beam relative to the base, and
a_(t) is taken as the time history of the ground acceleration produced by the North-South component
ot El Centro earthquake recorded on station No 117 and reported in the reference [12]. It is shown on
Figure 3 for comparisons with the beam response. Further, it is assumed that the beam has unit mass per
length. The discretization of the beam by a finite difference scheme built upon 20 nodes in the spatial
domain in conjuction with the Loeve-Karhunen expansion of the bending rigidity is used. Then, the
solution is taken in the form of equation (20) where in this case v; = v;(2) are deterministic vector-
functions. Substituting this expression into the resulting equation, multiplying it by ¢ (r) . and averag-
ing, an uncoupled system of deterministic ordinary differential equations is derived. Each equation of
this system is solved numerically using the central difference scheme. Finally, the mean value and the
standard deviation of the free end displacement are determined by relying on equation (7).

The time history of the free end displacement of the cantilever beam having the mean characteristic
for the stiffness and damping is plotted in Figure 4(a). Further results of the calculations are shown in
Figure 4(b.c) for different value of number N of indirect samplings. In Figure 4, Nj, N, and N denote
the sumber of strata in the domain of £, &,. and a. respectively. The case with a = 0.4 which corre-
sponds to damping of approximately 6% of critical for the first mode of the system with deterministic
rigidity equal to the mean of the corresponding stachastic problem is considered. Also the case where a
is a random variable statistically independent from £ and uniformly distributed between 0.1 and 0.7 is
examined. The computations show that 3 strata in the domain of o can adequately represent the depen-
dence of the solution on the damping variability. Also, the calculations reveal that only the first two
componeuts of the vector £ influence significantly the beam response. It can be seen that the dynamic
response of the beam to the deterministic excitation is strongly affected by the rigidity variability.
Beam Response to Stochastic Load.

The third problem is described again by equations (17) and (23) but it involves stochastic base exci-
tation. Specifically, a, (f) is taken as a stationary random process. The proposed indirect sampling
method can be readily applicd for treating this probiem. The solution is expressed in the form of equa-
tion (20). In this case v, =¥, () is not a deterministic vector-function, but a stochastic vector-process.
That is, v ; (1) is the response of a deterministic system to random excitation. A number of techniques




exist for the solution of this problem. In particular, a spectral approach can be applied provided that
a_(f) is a second order stochastic process. In the latter case the second-order characteristics of the
soiution can be determined from the formulae

N N
Elu] = ZE[v‘,(t)]p[ and R (1.1,) = zRv‘(ll‘/ﬁ[’i' 24
=] j=]

Then, this approach can be viewed as semi-analytical method analogous to the directional sampling. At
first, the vector & is simulated. and then. the solution for the given simulation is calculated using known
analytical techniques with subsequent application of some averaging as in equation (24).

Again, two cases for a are considered. First, « is a deterministic coefficient, and second a is uni-
formly distributed random variable; it induces for each mode of the discrete model of the beam damping
6%. and 2% to 10% of critical, respectively. The power spectral density of the disp. ..zment of the free
end is calculated using the proposed method for a_(f) being a white noise process of unit two sided
spectral density. The data for different numbers ofg indirect samplings are plotted in Figure 5 together
with the corresponding solution for the response of a deterministic system with rigidity equal to the
mean rigidity of the stochastic system. Figure 5 shows that the randomness of the system has a signifi-
cant effect on the system response variability and reduces the peaks of the response power spectral den-
sity. The calculations show that only two first components of the vector ¢ influence the first two
moments of the solution significantly. Further, the effect of the damping variability can be captured
using only two strata in its domain.

Concluding Remarks

A Galerkin-type numerical method for stochastic mechanics problems has been presented. Specifi-
cally, it has been proposed to use a Galerkin projection into the space of simple random variables. This
space can be spanned by the piece-wise constant spline functions with a chosen partition of the sample
space. Further, it has been shown that the proposed method can be construed a gencralized sampling; it
is proposed to call it indirect sampling. Indeed, it has been shown that this method is closed to the strat-
ified sampling method and it is optimal in the sense of equation (16). That is. the approximation of the
problem from the space of simple random variables produces an error with mean and conditional expec-
tation, given the sigma-algebra induced by this partition, equal to zero. It has also been shown that this
error has zero estimate from the set of indicator functions of the given stratification. Some stochastic
mechanics problems have been studied utilizing the proposed method in conjuction with the Loeve-Kar-
hunen expansion which is a versatile tool for the approximation of a stochastic field by a finite set of
random variables. These examples have demonstrated that the proposed method can be applied for treat-
ing a broad class of stochastic mechanics problems.
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